

A practical implementation guide to standardise lubrication, extend intervals and create audit-ready digital records

From lubrication tasks to lubrication control

Who this is for

- Maintenance managers
- Reliability engineers
- Maintenance technicians
- QA and HSE (secondary: contamination control, safe execution, audit readiness)

Purpose

Implement a practical approach to reduce variability in lubrication execution, extend intervals where justified and create audit-ready digital records that support control and continuous improvement—even under resource pressure.

This playbook can be implemented in-house or supported through different delivery models (in-house, supported, hybrid, or full delivery via Lubrication as a Service (LaaS[®]), depending on your preferred level of support.

How to use this playbook

1. **Choose a defined scope** (one line, one asset group, or one high-risk area).
2. **Run Steps 1–6** to set standards and digital control.
3. **Pilot first**, then scale what works.

Recommended pilot scope

Choose one:

- One production line
- One asset group (e.g., conveyors, chillers, gearboxes, bearings)
- One high-risk area (washdown zone, high temperature zone, hard-to-reach points)

Success criteria

Define 3–6 measurable outcomes (KPIs) upfront and capture a baseline for the selected scope before the pilot starts. Select KPIs you can reliably measure with existing sources (CMMS/EAM, production reporting and digital lubrication records, plus condition monitoring where available). Baseline: use the last 4–12 weeks of data (or the best available period) for the selected scope. Define for each KPI how it will be measured (data source, frequency and owner) so improvements/achievements/savings are demonstrable.

Select 3–6 KPIs from the examples below:

- fewer missed/late lubrication tasks
- fewer lubrication-related interventions
- interval extension where justified
- improved cleanliness and fewer contamination-driven issues
- improved completeness of digital records and faster audit response
- reduced safety exposure via fewer manual touchpoints in unsafe zones
- reduced lubrication man-hours (implementation and execution) on the pilot scope
- reduced lost production time (downtime minutes) on the pilot scope
- reduced lubricant consumption and lubricant waste (where tracked)
- improved detection and prevention via condition monitoring (where available)

The five control levers

1. correct lubricant selection (prioritise critical points first)
2. targeted automation with single point lubricators where it pays back
3. clean-before-lube standards for exposed applications and critical points
4. appropriate tools to reduce waste, errors and contamination risk
5. digital process control to standardise execution and create audit-ready digital records

Step-by-step implementation

Step 1 — Identify critical points

Goal: focus effort where failure consequence and duty severity are highest.

Capture per point:

- asset/tag, location
- point & component (bearing, chain, gearbox, guide, etc.)
- consequence of failure (downtime, quality, safety, compliance)
- duty conditions & environment: load, speed, temperature, water/chemicals, contamination, shock loads, start-stop
- access constraints (height, guarding, unsafe access, machine stop required)
- current interval & method (manual/automatic)
- known failure modes/history (if available)

Output: a prioritised list of points that drive disproportionate risk and workload, plus the top variability driver(s) per point.

Step 2 — Standardise lubricant selection (critical points first)

Goal: right lubricant per point, fewer errors through standardisation.

For critical points:

- confirm required lubricant type/specification vs duty + environment

- document “approved lubricant per point” (+ one-line rationale)
- reduce number of lubricants where feasible (lower mix-up risk)
- set identification rules (labelling, storage, point-of-use controls)
- define change control for lubricant substitutions (approval, record update and point-of-use relabelling)
- add quantity/rate guidance where practical

Output: a clear standard per point that holds across shifts.

Step 3 — Select automation candidates (single point lubricators)

Goal: reduce manual workload and variability where it pays back.

Prioritise points that are:

- hard to reach (height, guarding, unsafe access)
- frequently lubricated or often missed
- exposed to washdown/water/contamination
- high temperature or high load
- only serviceable by stopping equipment

Define before install:

- delivery rate/setting rules (matched to duty cycle)
- inspection + refill routines
- verification: check delivery setting vs actual consumption at first refill and after duty changes
- product identification + change control
- how adjustments/deviations are recorded

Output: a shortlist + standard settings/ownership to avoid “set-and-forget”.

Step 4 — Set the clean-before-lube standard

Goal: prevent abrasive paste and film failure from contamination.

Make clean-before-lube mandatory especially for:

- exposed applications
- washdown areas
- critical points

Minimum standard:

- remove built-up grime/corrosion where it blocks penetration
- prevent contamination being carried into grease points/chain interfaces
- confirm compatibility with materials and site procedures
- standardise the method (repeatable between shifts)

QA/HSE note: align with hygiene/safety procedures and make handling requirements practical.

Output: a simple rule-set: when to clean, how to clean, who owns it.

Step 5 — Standardise tools and application methods

Goal: reduce misapplication, spillage and contamination ingress.

Standardise point-of-use rules:

- minimise open grease containers
- define clean storage/handling for tools and lubricants
- standardise “how to apply”, not just “what to apply”
- keep fittings/nipples clean between intervals

Tool categories that help (examples):

- sealed dispensing/controlled delivery
- high-integrity couplers (better alignment, less spillage)
- clean cartridge-based grease delivery (less handling error, better ID)
- controlled surface applicators (consistent, clean application)

Output: consistent, clean execution across people and shifts.

Step 6 — Implement digital control and audit-ready digital records

Goal: make lubrication governable: planned vs executed vs deviations vs actions.

Minimum record standard in CMMS/EAM or lubrication platform:

- planned task (what/where/how often/with what)
- execution (date/time, who, completion)
- deviations (missed/late, access issue, adjustment, abnormality)
- corrective actions (owner, due date, closure)
- review cadence and owner

Non-negotiables:

- missed/late tasks are logged as deviations
- adjustments are recorded with rationale
- recurring deviations trigger standard updates

Output: audit-ready digital records that support control and continuous improvement.

Control loop (keep standards from drifting)

Weekly (15-30 min): execution discipline

- Review % on-time tasks, missed/late tasks and the top deviation types
- Remove blockers (access, stops, materials, method clarity) and assign owners/actions
- Record recurring deviations and trigger standard updates where needed

Monthly: KPI review vs baseline (pilot scope)

- Review lubrication-related interventions/failures and downtime minutes on the pilot scope
- Review workload impact (lubrication man-hours/week) and consumption/waste where tracked
- Compare KPI trends vs baseline and document decisions: adjust intervals where justified, update standards, refine automation settings and close corrective actions

Quarterly: standardise and scale

- Revalidate critical points, settings and standards (especially after duty or process changes)
- Confirm what should be standardised across similar assets and define the next scale scope

Copy/paste templates

Template A — Critical point assessment (one line per point)

- Asset/tag:
- Location:
- Lubrication point + component:
- Consequence of failure:
- Duty conditions & environment:
- Access constraints:
- Current lubricant/method/interval:
- Variability driver(s):
- Five-lever standard to implement:
- Notes/deviations to track:

Template B — Digital record minimum standard (per task)

- Task name + point ID:
- Standard method (clean-before-lube Y/N):

- Lubricant + quantity/rate:
- Planned interval:
- Execution fields (date/time/user):
- Deviation fields:
- Corrective action fields (owner/due/close):
- Review cadence + owner:

This playbook can be implemented in-house or supported in different delivery models (in-house, supported, hybrid, full delivery/LaaS®). Support can include technical guidance, standard definition, automation selection and digital process control (including ILAC® where relevant), depending on your preferred level of support.

<http://www.interflon.com>

